Effect of Cytokines on Osteoclast Formation and Bone Resorption during Mechanical Force Loading of the Periodontal Membrane
نویسندگان
چکیده
Mechanical force loading exerts important effects on the skeleton by controlling bone mass and strength. Several in vivo experimental models evaluating the effects of mechanical loading on bone metabolism have been reported. Orthodontic tooth movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading. In a mouse model of orthodontic tooth movement, TNF-α was expressed and osteoclasts appeared on the compressed side of the periodontal ligament. In TNF-receptor-deficient mice, there was less tooth movement and osteoclast numbers were lower than in wild-type mice. These results suggest that osteoclast formation and bone resorption caused by loading forces on the periodontal ligament depend on TNF-α. Several cytokines are expressed in the periodontal ligament during orthodontic tooth movement. Studies have found that inflammatory cytokines such as IL-12 and IFN-γ strongly inhibit osteoclast formation and tooth movement. Blocking macrophage colony-stimulating factor by using anti-c-Fms antibody also inhibited osteoclast formation and tooth movement. In this review we describe and discuss the effect of cytokines in the periodontal ligament on osteoclast formation and bone resorption during mechanical force loading.
منابع مشابه
Use of ethanol extracts of Terminalia chebula to prevent periodontal disease induced by dental plaque bacteria
BACKGROUND The fruit of the Terminalia chebula tree has been widely used for the treatment of various disorders. Its anti-diabetic, anti-mutagenic, anti-oxidant, anti-bacterial, anti-fungal, and anti-viral effects have been studied. Dental plaque bacteria (DPB) are intimately associated with gingivitis and periodontitis. In the quest for materials that will prove useful in the treatment and pre...
متن کاملOsteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading.
Bone has the ability to adjust its structure to meet its mechanical environment. The prevailing view of bone mechanobiology is that osteocytes are responsible for detecting and responding to mechanical loading and initiating the bone adaptation process. However, how osteocytes signal effector cells and initiate bone turnover is not well understood. Recent in vitro studies have shown that osteoc...
متن کاملMechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells.
Normal dynamic loading prevents bone resorption; however, the means whereby biophysical factors reduce osteoclast activity are not understood. We show here that mechanical strain (2% at 10 cycles per minute) applied to murine marrow cultures reduced 1, 25(OH)(2)D(3)-stimulated osteoclast formation by 50%. This was preceded by decreased expression of osteoclast differentiation factor (ODF/TRANCE...
متن کاملTNFa and pathologic bone resorption
Chronic inflammatory bone diseases, such as rheumatoid arthritis, periodontal disease and aseptic periprosthetic osteolysis, are characterized by bone loss around affected joints and teeth caused by increased osteoclastic bone resorption. This resorption is mediated largely by the increased local production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFa). These cytokin...
متن کاملHuman periodontal ligament cells express osteoblastic phenotypes under intermittent force loading in vitro.
UNLABELLED Mechanical strain applied to bone leads to bone remodeling. In the oral cavity, it is unclear how such mechanical force applied to move teeth orthodontically induces alveolar bone remodeling. It is known that osteoclasts are the only cells that are responsible for bone resorption, while the formation and activity of osteoclasts are regulated by osteoblasts. So it is believed that ost...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014